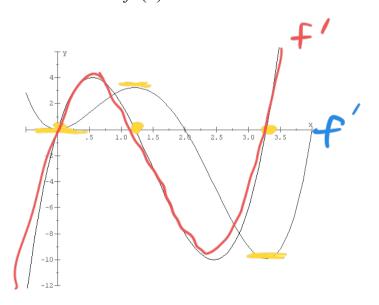
	Spring 2020		
MATH 5A - TEST 2			
(2.2-2.6, 2.8, 2.9)			
100 points	NAME:		
FILL IN THE BLANKS WITH MOST APPROPRIATE ANSWER:	(2 points)		
(1) If V(t) represents the volume water in the bath tub (in cubic inche number of minutes after 6:00 p.m., explain very specifically words	s, with units, what		
$\frac{dV}{dt} _{t=3} \text{ represents} \text{The instant neous rate of changes in tub relative to time at the differential, dy_{=} \frac{5ec^2dx}{2}$	inge if volume of water		
(2) If $y = \tan x$, the differential, $dy = \frac{5ec^2 dx}{2}$.	2 units In ³ /min		
(3) $\lim_{x \to 0} \frac{\sin x}{x}$ (4) If $f(x) = 3x^5$ then F = 15× ⁴	$f''(x) = 60 \times 5$		
(5) True or False: If f is differentiable at $x=a$ then f is continuous at x $\frac{1}{2}$	a=a. <u>TNE</u>		
(6) Given that $f(x) = g(x^2) + [g(x)]^2$, find $f'(x)$. $f'(x) = g'(x^2) = 2x + 2g(x)g'(x^2)$	(3 points)		

J

(7) The graphs below are of a function and its derivative. Clearly label which is f(x) and which is f'(x). (4 points)



In problems 8-12, find $\frac{dy}{dx}$. Work carefully, very <u>limited</u> partial credit will be given. Simplify your answers. Do not leave any negative exponents or complex fractions. Combine fractions(8 pts each)

(8)
$$y = \sqrt{x} \left(x^{2} + 3\sqrt{x}\right) = x^{5/2} + \frac{\partial x}{\partial x}$$

(9) $y = \sin\left(\frac{x^{2}}{2x+1}\right)$
(9) $y = \sin\left(\frac{x^{2}}{2x+1}\right)$
(9) $y = \sin\left(\frac{x^{2}}{2x+1}\right)$
(10) $y = \frac{x^{2}}{\sqrt{9-x^{2}}} = x^{2}(9-x^{2})^{1/2} \left(\frac{6}{9}(x) + 10^{10}}\right)$
(11) $y = \cos^{2}(\sqrt{x}) = \frac{(2x+1)^{1}}{(2x+1)^{1}}$
(11) $y = \cos^{2}(\sqrt{x}) = \frac{(2x+1)^{1}}{(2x+1)^{1}}$
(11) $y = \cos^{2}(\sqrt{x}) = \frac{(2x+1)^{1}}{(2x+1)^{1}}$
(11) $y = \cos^{2}(\sqrt{x}) = \frac{(2x+1)^{1}}{(2x+1)^{2}}$
(11) $y = \cos^{2}(\sqrt{x}) = \frac{(2x+1)^{1}}{(2x+1)^{2}}$
(11) $y = \cos^{2}(\sqrt{x}) = \frac{(2x+1)^{1}}{(2x+1)^{2}}$
(11) $y = \cos^{2}(\sqrt{x}) = \frac{(2x+1)^{2}}{(2x+1)^{2}}$
(12) $\sin(xy) = y^{2}$
(13) $y = 2y \frac{dy}{dx}$
(14) $y = 2y \frac{dy}{dx}$
(15) $y = -\frac{1}{2} \cos(xy) + \lambda(\cos(xy)) \frac{dy}{dx} = 2$

$$cos(xy) \frac{d}{dx}(xy) = 2y \frac{dy}{dx}$$

$$ry(cos(xy) + \lambda(os(xy)) \frac{dy}{dx} = 2y \frac{dy}{dx}$$

$$y(cos(xy)) = 2y \frac{dy}{dx} - \lambda(co(xy)) \frac{dy}{dx} = 2y \frac{dy}{dx}$$

$$y(cos(xy)) = 2y \frac{dy}{dx} - \lambda(co(xy)) \frac{dy}{dx} = 2y \frac{dy}{dx}$$

$$y(cos(xy)) = 2y \frac{dy}{dx} - \lambda(co(xy)) \frac{dy}{dx} = 2y \frac{dy}{dx}$$

$$y(cos(xy)) = 2y \frac{dy}{dx} - \lambda(co(xy)) \frac{dy}{dx} = 2y \frac{dy}{dx}$$

$$y(cos(xy)) = 2y \frac{dy}{dx} - \lambda(co(xy)) \frac{dy}{dx} = 2y \frac{dy}{dx}$$

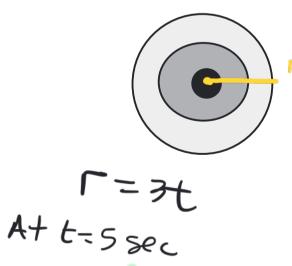
(13) Use differentials or linear approximation to approximate
$$\frac{3}{2696}$$
 (9 points)
Let $f(x) = \chi^{1/3}$, $APPPOXIMAR f(266.96)$
Let $f(x) = \chi^{1/3}$, $APPPOXIMAR f(26.96)$
Let $f(x) = \chi^{1/3}$, $APPPOXIMAR f(2x) = \chi^{1/3}$,
 $L(x) = f(a) + f'(a)(x-a)$, $f'(x) = \chi^{1/3}$,
 $L(x) = f(a) + f'(a)(x-a)$, $f'(x) = \chi^{1/3}$,
 $L(x) = 3 + \frac{1}{27}(x-a)$, $f'(x) = \frac{1}{37^{2/3}}$,
 $f'(x) = \frac{1}{37}$, $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x) = \frac{1}{37}$,
 $f'(x$

(15) An airplane flies at an altitude of 5 miles directly toward a point directly over an observer. The speed of the plane is 600 miles per hour. Find the rate at which the angle of elevation, θ , is changing when the angle is 30°.(show units) VADA

units)	$\frac{dX}{dt} = 600$	want	(8 points)
	$\frac{dX}{dt} = 600$	Want 10 47 (0=30.	
		47 10=30	
θ	5 miles		
$\overline{\odot}$		$tano = \frac{5}{X}$	
	<u>व</u> क्र	$- \cot \Theta = \frac{1}{2}$	
		$-\cos^{2}\theta = \frac{1}{4}$	$= \frac{1}{5} dx$
		$\frac{d\theta}{dt} = \frac{1}{5}$	$\frac{1}{10} \sin^2 \theta$
		et > (It U
	Q		
	0	け 5($(510,30)^{2}$
		0=30-	(-600) (SIN 30) ² = 30 degrees/hr

(16) A stone dropped into a still pond sends out a circular ripple whose radius increases at a constant rate of 3 cm/sec. How fast is the area enclosed by the ripple increasing when t=5seconds? (show units) Know

Want



r = 15

$$\frac{dr}{dt} = \frac{3}{3} \frac{dA}{dt} |_{t=5}^{(1)}$$

$$A = \pi r^{2}$$

$$\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$$

$$\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$$

$$\frac{dA}{dt} = 2\pi (15) 3$$

= 90TT Cm²/sec

(8 points)

